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Architecting & Optimizing Future Missions

Over the past few years, the acceleration in technology development enables new Multi-Spacecraft Concept and Autonomy Tool (MuSCAT) aims to answer this
capabilities and ambitions in terms of space mission design. In particular, the need. It was first built for the Distributed Radar Observation of Interior
miniaturization of SmallSat and CubeSat avionics enhances the possibilities for Distributions (DROID) mission concept, which is a three-spacecraft architecture
multi-spacecraft mission architectures. However, new configurations introduce around the small-body Apophis. This case study illustrates the need for a such
new challenges during the preliminary mission design phase since the current tool, having multiple spacecraft with different avionics and payloads, with different
tools are mostly adapted for single-spacecraft architectures and the number of trajectories, and different roles to play during the mission. MuSCAT’s objective is
feasible configurations grows exponentially for multi-spacecraft architectures. A to iterate quickly from one design to another, allowing us to assess the key
new tool is required that will allow designs to rapidly design interplanetary mission mission success parameters, such as science yield, and determining the impact to

systems and verify their ability to achieve mission success. spacecraft resources, such as power, momentum, data storage, and others.
Simulating Science & Mission Performance In the Same Loop
General Approach Progress Toward Improving Model Fidelity

The simulation takes several classes of inputs: Environmental Parameters

- Spacecraft behaviors that define rules for how spacecraft - Body shgpe, gr avn.‘y model _ Datetime e e e Single Agent - NEW

behavior within and change between modes - Body spin rate, axis _ Science coverage qualit ° : :

- Enivonmental parameters that define the target body and - Sun, Earth, body locations definitions J9e quatly Specific Build ® One spacecraft

positions of Sun & Earth - Solar pressure ® Focused on Science e Model ACS and

- Mission parameters that define the context of the mission and : _ _

value of science measurements ® No attitude control —> environment physics

® No orbit control ® Model telecom

Spacecraft Parameters ® No autonomy

- Masses, areas, moments of
Inertia, solar panel geometries

- Desired & true trajectories

- Sun, Earth, body angles

- Spacecraft performance (e.g.
momentum storage)

- Payload specification (e.g. FOV)

Simulation Outputs

_ Data downlinked MuSCAT Development - NEW

- Spacecraft states & modes
- Resource use (e.g. propellant,

MuSCAT Use - NEW

power, momentum, data) Develop generic Model DART and
Spacecraft Behaviors simulation tool using — DROID missions
- Payload use rules (e.g. imaging) elements from Smgle using MuSCAT

- Telecom (crosslink, DTE) rules Agent software push

- Propulsion (TCM, desat) rules
- Spacecraft mode change rules

New Simulation Models DART & DROID

DART To test MuScAT, we inputted parameters of the DART spacecraft and mission design. Spacecraft behaviors,
including payload, telecom, propulsion, and ACS are modeled resulting in the DART impact.

Modeling ACS, Propulsion Behaviors and Environmental Effects

RWA geometries and momentum management are fully modeled. Desats Body geometries and moments of inertia are modeled
are performed when wheel momentum thresholds are met. the generate realistic solar pressure and gravity gradient
effects on mission and systems performance.
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Modeling Telecom System Performance

The entire link equation is modeled, including antenna gain patterns, to estimate link margin and expected data rate performance as a o s VTR T = : l ‘ l ‘ I , l ‘ ‘ \
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function of link and pointing parameters. : ~

For this case study, we model DRIOD’s three-spacecraft constellation that has rendezvoused with Apophis
DRO'D In order to Image and take monostatic and bistatic radar measurements. The constellation has a mothership
and two identical CubeSats — each system type requiring unique specifications (e.qg., only the mothership

+ TX gain + RX gain has direct-to-Earth communications).
e e + coding gain
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