

Jet Propulsion Laboratory California Institute of Technology

Lunar Flashlight Mission Overview

Daniel Grebow, Stefano Campagnola, Robert Haw, Theodore Sweetser

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Lunar Flashlight

- One of several CubeSats launching with Artemis I
- Objective: determine the presence and abundance of water ice in cold traps at the south pole by shining lasers into shaded regions and measuring surface reflection
- Science orbit is a northern Near-Rectilinear Halo Orbit (NRHO)

Video credit: NASA/Goddard Space Flight Center

Earth-Moon L₂ Northern Halo Orbit Family CR3BP

Spacecraft always has direct line-of-sight with Earth, orbital direction of motion is clockwise as viewed from Earth, views above are in Moon-centered Earth-Moon-rotating coordinates.

Transitioning NRHO to Full Ephemeris Model

Initial guess for \mathbf{r}_i , \mathbf{v}_i , \mathbf{t}_i from CR3BP periodic orbit

ARTEMIS I

The first uncrewed, integrated flight test of NASA's Orion spacecraft and Space Launch System rocket, launching from a modernized Kennedy spaceport

Total distance traveled: 1.3 million miles – Mission duration: 26-42 days – Re-entry speed: 24,500 mph (Mach 32) – 13 CubeSats deployed

Post-Launch Notional ConOps

Transfer trajectory – design approach

- Create database of trajectories, propagated forward from interim cryogenic propulsion stage (ICPS) separation and backward from Lunar Orbit Insertion (LOI)
 - NASA's Advanced Concepts Organization delivered Oct 2019 ICPS post-disposal states ranging 11/6/2020 – 10/14/2021
 - From data selected Aug 14, 2021 as 'notional' launch for study
- Patch trajectories with similar states at apogees, optimize
- This robust approach is adaptable for automation, which is critical for LF due to the need to compute one or more different solutions per launch day
- Heritage from EQUULEUS

Patching databases for notional launch on Aug 14, 8 pm UTC

Notional Lunar Flashlight Transfer

Flight time: 173 days

9

Shadow Times for Notional Science Orbit

Mission Duration & ΔV Budget

- Total mission duration (< 8-month requirement): 7.8 months
- Total notional ΔV: 87 m/s
- ΔV uncertainty 1-sigma assumed at 25% of each maneuver allocation

	Notional Reference ΔV (m/s)	Mission Design Allocation ΔV (m/s)	1-sigma (m/s)
TCMs lunar targeting	15	20	5
DSMs	13	50	12.5
LOI	10	12	3
Science maintenance	7	10	2.5
Total (uncertainty RSSed)	45	92	14
Total + 3-sigma	87	134	N/A

Total spacecraft ΔV capability: ~300 m/s