M (/)RS

In Situ Data Collection Paving the Way for Human Mars Exploration with the MARS_{DROP} Microlander 2015 April 27 Interplanetary Small Satellite Conference Santa Clara, California

Robert L. Staehle/Jet Propulsion Laboratory-California Institute of Technology Matthew A. Eby/Aerospace Corp., Rebecca M. E. Williams/Planetary Science Institute Sara Spangelo, Kim Aaron, Rohit Bhartia, Justin Boland, Lance Christensen, Siamak Forouhar, Nikolas Trawny, Chris Webster/JPL-Caltech David Paige/University of California-Los Angeles

Planetary Science Institute

From canyons to glaciers, from geology to astrobiology, the amount of exciting surface science awaiting us at Mars greatly outstrips the available mission opportunities. MARS_{DROP} was motivated by the desire to fly piggyback Mars microprobes to increase opportunities

BEAGLE 2 (ESA)

Newton Crater (seasonal flows)

Tharsis

(lava flows)

Polar Areas (sublimating frost) Valles Marineris (layered rock)

Chryse

(outflows)

VIKING 1

MER OPPORTUNIT

NASA Images

Science Goals and Measurements

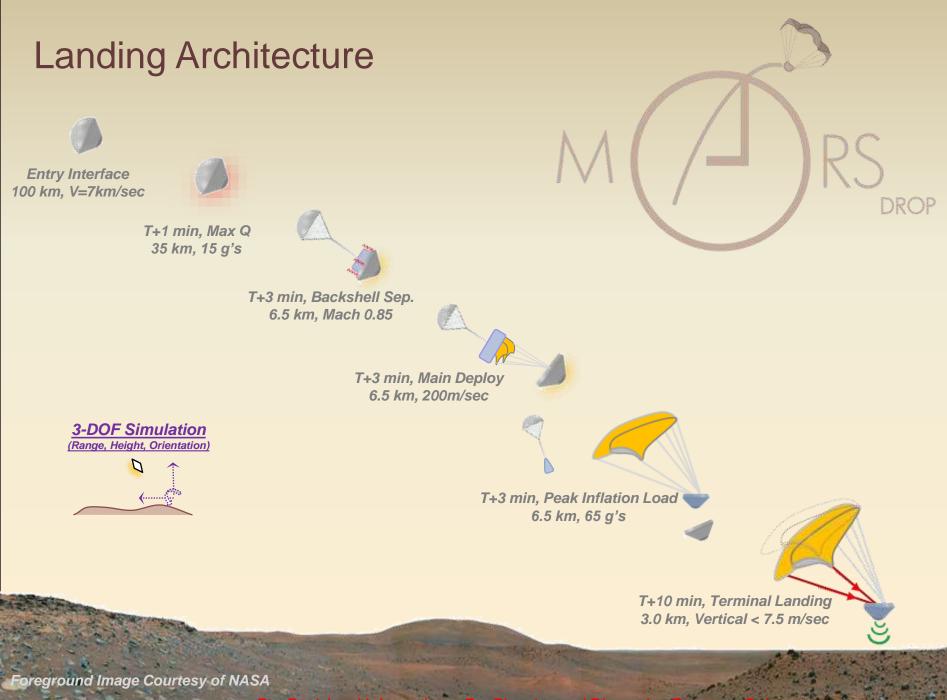
NASA's Mars Exploration Program Science Objectives

- Goal 1: Determine whether life ever existed on Mars
- Goal 2: Characterize the climate of Mars
- Goal 3: Characterize the geology of Mars

Goal 4: Prepare for human exploration--mostly about biohazards and resource determination (mostly water availability)

	Proposed Payload Suites (each with multiple small instruments)	U	Ambient conditions & Dust Hazard	Mineralogy	Geology	Internal Structure	Total Mass
#	Goals	1,3	1,2,4	1,3	3	3	
	Still camera, seismometer, multispectral imager, weather station				~	~	1 kg
	Still camera, seismometer, aerosol sensor				\	~	1.05 kg
	Still camera, seismometer, deep UV fluorescence	~			~	~	>1.5 kg
	Video camera, tunable laser spectrometer (CH4, H2O, CO2), T, P, RH	~			√		1 kg

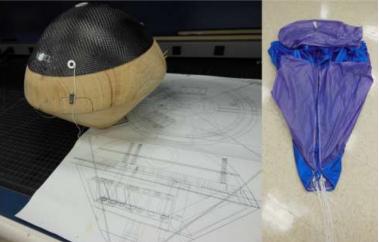
Developing a Landing Architecture for a Planetary Microprobe


Summary/Bottom Line

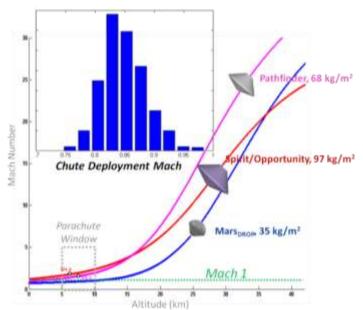
A bold approach towards Mars exploration that seeks to enable new science on a global scale:

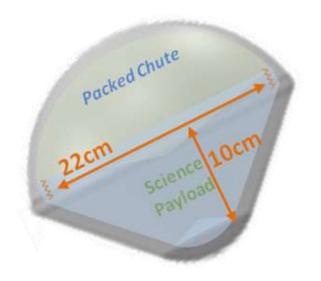
Aiming for the first successful Mars microprobe lander
And the first flying vehicle on another planet
And the cheapest Mars vehicle

T+10 min, Flying a 20°Glideslope


> Touchdown! 3.0 km, Vertical < 7.6 m/sec

Concepts:	Solid Circular Parachute	Disk-Gap-Band Parachute	Inflatable Decelerator	Vortex Ring Parachute	Parawing
Claim to Fame	"Standard" Round Solid Parachute	Used on all NASA Mars Landers	Targeted for future NASA Mars Landers	Highest Drag	Gliding Chute
Supersonic	No	Yes	Yes	Unreliable	No
Complexity	Low	Low	High	High (Swivel)	Medium
Prior Research	Extensive	Extensive	Moderate	Minimal	Moderate
Subsonic Drag	Moderate (C _D ~ 0.9)	Low (C _D ~ 0.6)	Moderate (C _D ~ 0.8)	Very High (C _D ~ 2.0)	Very Low (C _D \sim 0.3), but Lift
Mass / Volume for 7.5m/s vertical velocity (reference V)	1.1 kg / 2300 cm ³	1.7 kg / 3480 cm ¹	2.5 kg / 5200 am ³	0.5 kg / 1050 cm ³	0.2 kg / 200 cm
Notes / Landing Site Limitations		Poor subsonic drag prompts two-stage deceleration	Is attractive for much larger vehicles	Suspect Reliability	Horizontal velocity -could be good or bad





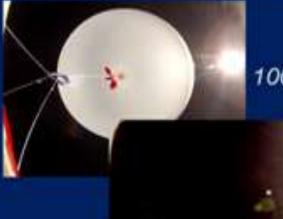
Capability Summary

- Probe is largely inert ballast from the host standpoint, added burden of 10 kg per probe
- Probe shape derived from REBR/DSII, provides passive entry stability
- Entry mass limited by the need to provide a subsonic parachute deployment
 - 3-4 kg probe entry mass
 - Accommodates a ~1 kg science payload
- Packed chute preserves a significant portion of the volume for a landed payload
- Parawing is potentially steerable, opening the way for targeted landing
 - New missions enabled
- Inexpensive, \$20-50 million per mission
 - Encourages high risk destinations, such as canyons

Going to Mars on Earth

Release

Accelerate to Q


Recovery Tracking Beacon, Position & Telemetry 144.39 MHz & 430 MHz

Launch

Flight	Test Objective	Setup	Drop Altitude	Chute Deploy V	Chute Deploy Q	Canopy Condition	Test Result
MARS _{DROP} 0 (May 2013)	Launch, Tracking, Recovery	Only Flight Computer	104,000	N/A	N/A	N/A	Experimental Setup Checked
MARS _{DROP} 1 (May 2013)	Parawing Deployment	Chute Bomb	80,000	•	-3	÷	Electrical Short-No Parawing Deployment
MARS _{DROP} 2 (Sept. 2013)	Parawing Deployment	Chute Bomb	100,500	300 mph	200 Pa (On Target)	No Damage	Successful Inflation, Backshell Tangled with Lines Post Deployment
MARS _{DROP} 3 (Feb. 2014)	Capsule Demonstration	Capsule	115,000	500 mph	410 Pa (Overtest)	No Damage	Capsule Oriented Backwards-Canopy Inverted at Deployment
MARS _{DROF} 4 (May 2014)	Capsule Demonstration	Capsule	114,000	550 mph	580 Pa (Overtest)	Minor Damage- Wing Tip Line Snapped	Successful Inflation & Deployment from Capsule-New Packing Procedure Verified
MARS _{DEOF} 5 (Sept 2014)	Capsule Demonstration	Capsule	111,000	400 mph		No Damage	Successful Inflation & Deployment from Capsule-AoA Too High

Target Drop Altitude 90k – 100k feet

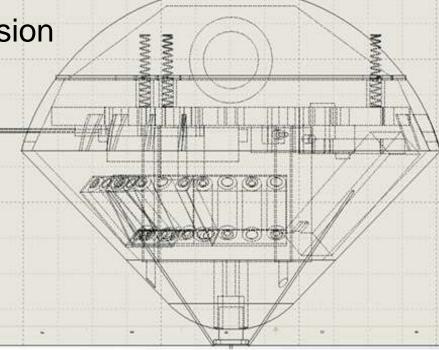
Conduct Test

Parawing Deployment Test Sequence

100,501 feet, -40°C

Balloon Release & Freefall

Poak Transient


Cover Jettison, 300 mph, 200Pa

Chute Extension

A Technology Demonstration Mission

- A low cost demonstration mission could be mounted in the near future based largely on existing elements:
 - Cruise stage carrier brackets borrowed from Mars Polar Lander design.
 - Aeroshell derived from REBR/DSII.
 - Flight computer borrowed from Aerospace/JPL CubeSats.
 - Iris-based radio.
 - COTS imaging descent camera.
- Once demonstrated, several piggyback probes can go with each Mars-bound craft at minimal added cost & mass.
 - Instrument technology survey identified a wide range of plausible payloads.

Driving Performance Parameters

Performance Parameters	Tech Demo (Initial Flight)	First science demo	"Operational" Capability Target
Number of Mars _{DROP} Landers	One	One+	2 - 10
Allowable payload mass	100 0	1 kg	1 kg, growing to 2+ kg
Spacecraft landing orientation control	50% chance of achieving desired orientation	90% chance of achieving desired orientation	90% chance of achieving desired orientation
Average Collected Solar Power	0.5 <mark>W</mark>	1 - 2 W	2 – 5 W
Battery Capacity	16 Whr	50 Whr	same or greater
Surface Survival Duration	1 s <mark>ol</mark>	30 sols	1 Mars year
Data Volume Return	100 kbits	>10 MBytes	>100 MBytes
Host Support	position knowledge before deployment.	position knowledge before deployment.	add trickle charge, command & sw upload, checkout data download
Glide distance	10 km	10+ km	10+ km
Landing accuracy	1 km	100s m	10s m

Preliminary Mass/Equipment List

Subsystem	Components	Mass	Average Power	Heritage
Entry & Deceleration	Parawing, Aeroshell, Controls	1500 g	-	REBR/DSII
Payload	Instrument Allocation	<1000 g	<2 W	Variable
Power	Electrical Power System (EPS) & Battery Board	<100 g	<1 W	INSPRE
	Body-Mounted Solar Panel (3U)	135 g	-	
	Batteries (2x18650 Li Ions, ~16 Whr)	90 g	-	INSPIRE
Avionics	Flight Computer (C&DH)	<100 g	<1 W	INSPIRE
Telecom	UHF Proxy-1 Radio	<100 g	<3 W	TBD
	UHF Low Gain Antenna	<80 g	-	RAX-1/2
Navigation	GumSticks Camera	<50 g	<1 W	IPEX/COVE
	IMU (Gyro & Accelerometer)	<10 g	<0.1 W	MarCO
Mechanical	Structure & Harnessing	<150 g	-	TBD
Sterilization	Sterilization Bag	< 50 g	-	TBD
TOTAL	Total No Margin/ With 10% Margin	<3.4 kg/ <3.7 kg	Variable	-

Total mass (10% margin) just under maximum allowable allocation

Solar Panels expected to generate ~ 7.5 W max, ~2-3 W available continuously

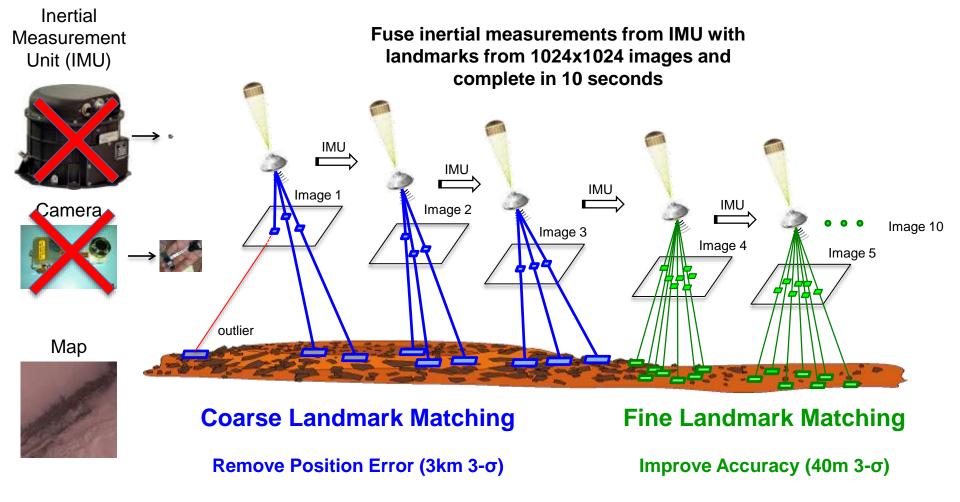
Instrument Type	Mass (g)	Power (mW)	Max Dimension	Example	Modifications Required	Measurements & Remarks	POC/JPL Org
			(mm) 📑				
Video Camera	74	600-1900	60	GoPro Hero3	Rad tolerance; modify for external control	720p, 960p, 1080p video with 3 FOVs up to ~150 deg. 5, 7, 10 MP pictures with 3 - 10 fps.	T. Imken/ T. Goodsall
Legacy still camera	220	215	67	MER/MSL Hazcam & Navcam	Lander to provide input voltages and camera control	High heritage; scientific quality CCD still images up to every 5 sec. >20 units to Mars.	M. Walch
SmartCam	<100	< 1600	58	PIXHAWK	Low op temp, Rad tolerance.	Machine vision camera and processing to support glide-to-target guidance.	J. Boland
uSeismometer	200	100	30	JPL Microdevices		Performance comparable to conventional terrestrial seismometer.	R. Williams/PSI
Weather Monitor	≤1930	12,750 (peak)	140	REMS/MSL, Twins/InSIGHT	Adapt to the desired envelope.	Configuration is flexible and sensors can be added or subtracted/replaced + dust sensor via a dedicated camera	M. de la Torre Juarez
Aerosol Properties Sensor	630	4300 (peak)	70	REMS/MSL, Twins/InSIGHT	Adapt to the desired envelope.	(included above)	M. de la Torre Juarez
Multispectral Microscopic Imager VNIR	240	3000 (60 sec.)	67	MER-MI Rosetta ROLIS Phoenix RAC	Wider FOV	Infer mineral grain composition at <1 mm scale. Operates day (panchromatic) or night (multispectral 0.4 to 1.0 microns).	R. Glenn Sellar
Multispectral Microscopic Imager VSWIR	150	9000 (5 mins)	110	MMI Mars 2020 proposal	Wider FOV ~ 30 x 30 cm. Consider COTS InGaAs camera	Infer mineral grain composition at <1 mm scale. Passively-cooled HgCdTe - operates at night (multispectral 0.45 to 2.45 microns).	R. Glenn Sellar
Deep UV Fluorescence Imager	700	3000 (peak)	150	Lab demo	Communication/power from vehicle.	Organic detection. Small UV light sources dependent on current DARPA efforts.	R. Bhartia
Deep UV Fluorescence / Raman Imager	3000	15000 (peak)	250	SHERLOC/ Mars 2020	Reduce mass, comm/power from vehicle	Organic detection, astrobiological-relevant minerals, Ops short burst laser source high TRL.	R. Bhartia
Iris 2+ Transponder	700	12,000 (xmit)	100	Iris on INSPIRE Cubesat	Reduce mass (perhaps UHF- only), cold temp - For Planning and Disc	Data downlink 8 kbps X-band direct to DSN 70 m at 1 AU; higher rates by UHF to Mars orbiting relay assets.	C. Duncan

Example Camera System

with Computation for Terrain Relative Navigation

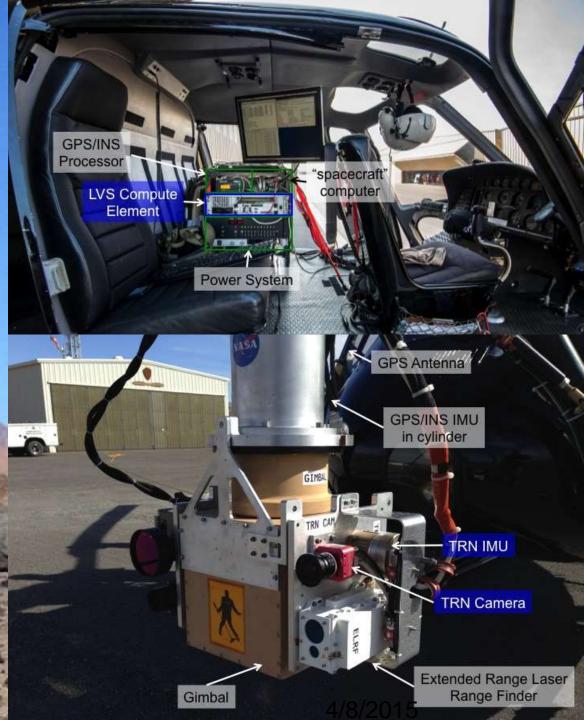
Gumstix module (left) mounted on a programming board and connected via flex cable to a 1 MP Aptina MT9V032-based camera with M12 lens (right).

The TI AM3703 DSP could run a modified version of the Mars2020 Lander Vision System to provide Terrain Relative Navigation better than 1 meter knowledge at landing.

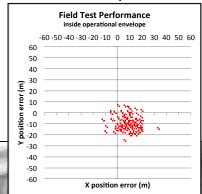

- Materials compatibility.
- Modest rad tolerance (<~3 krad).
- Thermal tolerance or heater.
- Different pressure sensor?

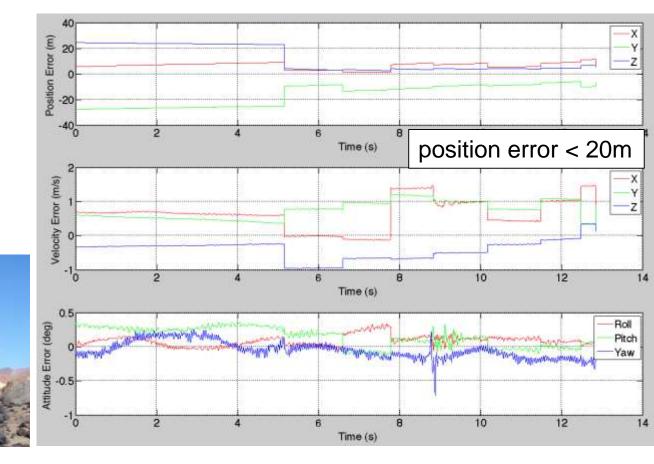
Parameter	Specification					
Mass, Power, Volume	33 g, 475 mW, < 6 cc					
FOV, iFOV, pixels	48°, 1 milliradian, 1 MP					
framerate	60 fps					
lens	4-element glass, f/4, 6 mm					
Computation	TI AM3703 DSP with 1GHz ARM CORTEX A8					
IMU input for Lander Vision System	MEMS Altimeter & 3- axis MEMS accelerometer					

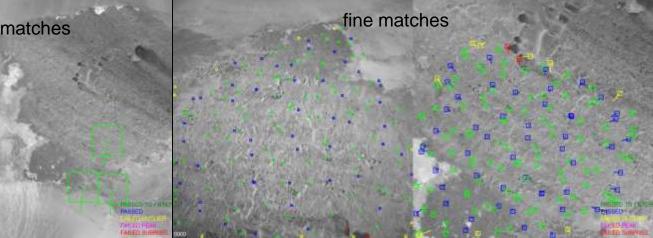
14 Pre-Decisional Information -- For Planning and Discussion Purposes Only (POC: Justin Boland, Justin.S.Boland@jpl.nasa.gov)


Synergy with Mars Lander Vision System

State Estimation

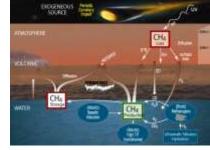

 LVS prototype tested over Marsanalog terrains in Feb/March 2014


- Test collected data to validate technology over a wide operational envelop defined by expected M2020 conditions
- LVS meets position accuracy and robustness requirements
- Field test demonstrated maturity of the algorithms


LVS Helicopter Test March 2014

- · LVS prototype tested over Marsanalog terrains in Feb/March 2014
- · Estimates position, velocity and attitude
- takes out 3km position error
- 40m 3 sigma position error at 2km altitude
- 1s TRN updates
- 20Hz state updates

coarse matches

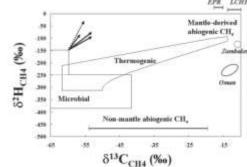

Planetary atmospheric studies

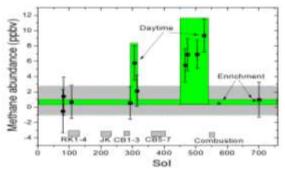
By analogy with Earth, methane gas is a potential indicator of biological activity on Mars, possibly from sub-surface microbes.

Mars Reconnaissance OrbiterWhat is the source of methane Measurement of isotopic ratio of launched in 2005 observed generation on Mars ? Does life ¹³C/¹²C could answer the origin of methane in the Martian exist on Mars? methane on Mars

MRO spacecraft

Mars Methane Cycle

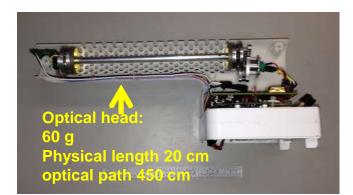

Curiosity Rover landed on Mars Aug.5th,2012



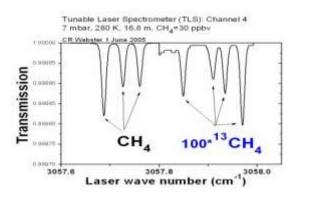
TLS instrument PI: (C. Webster)

POC: Lance Christensen/JPL

Pre-Decisional Information -- For Planning and Discussion Purposes Only

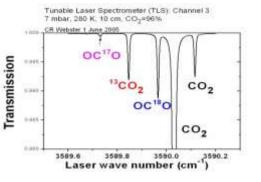


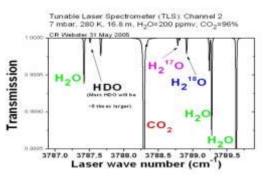
TLS-SAM-MSL has detected methane on Mars in two distinct regimes: At background levels of 0.7 ppbv


generated by UV degradation of infalling meteorites

In bursts of methane at 7 ppbv – ten times above background- that rapidly come and go

Example Instrument: Tunable Laser Spectrometer (300 g, 2W for continuous measurement) could measure gases such as Methane (CH_{4}), Water (H_2O) and isotope ratios within these gases: D/H, ¹³C/¹²C, ¹⁸O/¹⁷O/¹⁶O in a descent (DROP) profile or on-surface sampling.


Capability:



Methane Isotope Ratios at 3.27 μm JPL + industry has invested in miniature methane sniffers for public safety and reducing fugitive emissions

- Precision is 100's ppt s⁻¹ ambient Earth conditions
- Mars pressure << Earth; Expect few ppb s⁻¹ sensitivity with same miniature configuration

Carbon Dioxide Isotope Ratios at 2.78 µm

Water isotope ratios at 2.64 µm

Example Instrument: Deep UV Fluorescence

Trace Organics/Biosignature Detection

- Deep UV (excitation <250 nm) spectroscopy is an active spectroscopic method that *enables* detection and characterization of organics and astrobiologically relevant minerals.
- Integrated visible imaging CCD context camera.
- NASA- & DARPA-supported development >15 yrs.
- ~700 g, <15W for Fluorescence-only.

Deep UV laser induced native fluorescence

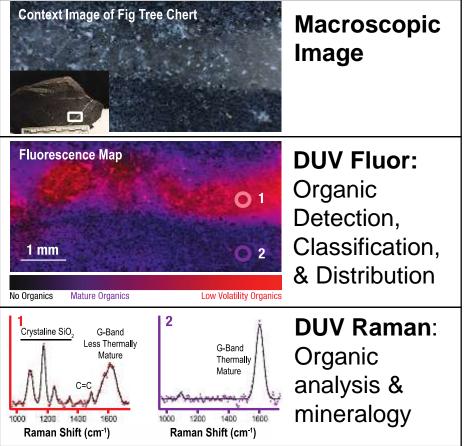
- Enables detection and differentiation of organics
 - · both abiotic and biotic organics
 - Organics in meteorites (wide range of thermal maturity), and potential biosignatures.
- Maps organic distribution over 1cm²
- Sensitivity at ppb.

Deep UV resonance Raman

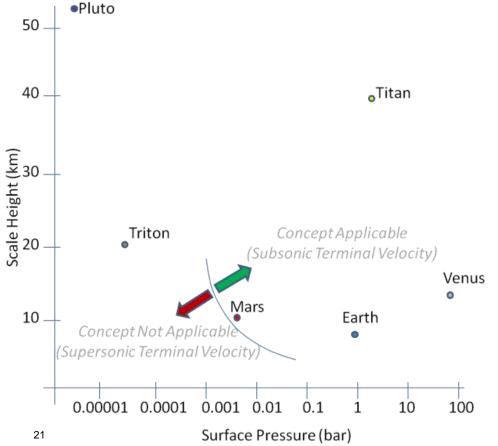
- Enables detection and characterization of a wider range of organics relevant to biosignatures and alteration processes.
- <u>Presently too large for MarsDrop microlander capability.</u>

Current Status

- Mars 2020 SHERLOC instrument under development;
- 3+ kg.; miniaturizing in progress.
- TRL advancements for next generation sub-250 nm deep UV sources to be developed to reduce overall size.


(POC: Roh Bhartia <u>rbhartia@jpl.nasa.gov/</u> Luther Beegle, <u>beegle@jpl.nasa.gov</u>)

Deep UV Fluorescence/Raman Instr.


SHERLOC-Mars 2020 Prototype

Example Data Product

Beyond Mars

- Concept equally applicable to planetary atmospheres thicker than Mars: Earth, Titan, Venus
 - Titan, in particular, has a variety of terrain, lakes, and potentially rivers; ability to send multiple probes to different sites is attractive.

Summary

Contact: robert.l.staehle@jpl.nasa.gov 818 354-1176

- Double or triple the number of Mars landers at small additional cost for each mission opportunity.
- Target high-risk locations, including canyons and crater walls.
- Distributed science from multiple sites simultaneously.
- Allow heavy university and small business involvement, at a level just now starting with beyond-Earth CubeSats.

One day it is hoped that gliding probes will also swoop over and land in the canyons, craters, and lakes of other worlds.